Posted on Leave a comment

Physical rehabilitation as an agent for recovery after spinal cord injury.

date: 05/18/2007
author: Behrman AL, Harkema SJ.
publication: Phys Med Rehabil Clin N Am. 2007 May;18(2):183-202, v.
pubmed_ID: 17543768

The initial level of injury and severity of volitional motor and clinically detectable sensory impairment has been considered the most reliable for predicting neurologic recovery of function after spinal cord injury (SCI). This consensus implies a limited expectation for physical rehabilitation interventions as important in the facilitation of recovery of function. The development of pharmacologic and surgical interventions has always been pursued with the intent of altering the expected trajectory of recovery after SCI, but only recently physical rehabilitation strategies have been considered to improve recovery beyond the initial prognosis. This article reviews the recent literature reporting emerging activity-based therapies that target recovery of standing and walking based on activity-dependent neuroplasticity. A classification scheme for physical rehabilitation interventions is also discussed to aid clinical decision making.

Posted on Leave a comment

Shaping appropriate locomotive motor output through interlimb neural pathway within spinal cord in humans.

date: 06/01/2008
author: Kawashima N, Nozaki D, Abe MO, Nakazawa K.
publication: J Neurophysiol. 2008 Jun;99(6):2946-55. Epub 2008 Apr 30.
pubmed_ID: 18450579

Direct evidence supporting the contribution of upper limb motion on the generation of locomotive motor output in humans is still limited. Here, we aimed to examine the effect of upper limb motion on locomotor-like muscle activities in the lower limb in persons with spinal cord injury (SCI). By imposing passive locomotion-like leg movements, all cervical incomplete (n = 7) and thoracic complete SCI subjects (n = 5) exhibited locomotor-like muscle activity in their paralyzed soleus muscles. Upper limb movements in thoracic complete SCI subjects did not affect the electromyographic (EMG) pattern of the muscle activities. This is quite natural since neural connections in the spinal cord between regions controlling upper and lower limbs were completely lost in these subjects. On the other hand, in cervical incomplete SCI subjects, in whom such neural connections were at least partially preserved, the locomotor-like muscle activity was significantly affected by passively imposed upper limb movements. Specifically, the upper limb movements generally increased the soleus EMG activity during the backward swing phase, which corresponds to the stance phase in normal gait. Although some subjects showed a reduction of the EMG magnitude when arm motion was imposed, this was still consistent with locomotor-like motor output because the reduction of the EMG occurred during the forward swing phase corresponding to the swing phase. The present results indicate that the neural signal induced by the upper limb movements contributes not merely to enhance but also to shape the lower limb locomotive motor output, possibly through interlimb neural pathways. Such neural interaction between upper and lower limb motions could be an underlying neural mechanism of human bipedal locomotion.

Posted on Leave a comment

Alternate leg movement amplifies locomotor-like muscle activity in spinal cord injured persons.

date: 02/01/2005
author: Kawashima N, Nozaki D, Abe MO, Akai M, Nakazawa K.
publication: J Neurophysiol. 2005 Feb;93(2):777-85. Epub 2004 Sep 22.
pubmed_ID: 15385590

It is now well recognized that muscle activity can be induced even in the paralyzed lower limb muscles of persons with spinal cord injury (SCI) by imposing locomotion-like movements on both of their legs. Although the significant role of the afferent input related to hip joint movement and body load has been emphasized considerably in previous studies, the contribution of the “alternate” leg movement pattern has not been fully investigated. This study was designed to investigate to what extent the alternate leg movement influenced this “locomotor-like” muscle activity. The knee-locked leg swing movement was imposed on 10 complete SCI subjects using a gait training apparatus. The following three different experimental conditions were adopted: 1) bilateral alternate leg movement, 2) unilateral leg movement, and 3) bilateral synchronous (in-phase) leg movement. In all experimental conditions, the passive leg movement induced EMG activity in the soleus and medial head of the gastrocnemius muscles in all SCI subjects and in the biceps femoris muscle in 8 of 10 SCI subjects. On the other hand, the EMG activity was not observed in the tibialis anterior and rectus femoris muscles. The EMG level of these activated muscles, as quantified by integrating the rectified EMG activity recorded from the right leg, was significantly larger for bilateral alternate leg movement than for unilateral and bilateral synchronous movements, although the right hip and ankle joint movements were identical in all experimental conditions. In addition, the difference in the pattern of the load applied to the leg among conditions was unable to explain the enhancement of EMG activity in the bilateral alternate leg movement condition. These results suggest that the sensory information generated by alternate leg movements plays a substantial role in amplifying the induced locomotor-like muscle activity in the lower limbs.

Posted on Leave a comment

Femoral loads during passive, active, and active-resistive stance after spinal cord injury: a mathematical model.

date: 03/19/2004
author: Frey Law LA, Shields RK.
publication: Clin Biomech (Bristol, Avon). 2004 Mar;19(3):313-21.
pubmed_ID: 15003348

OBJECTIVE: The purpose of this study was to estimate the loading environment for the distal femur during a novel standing exercise paradigm for people with spinal cord injury. DESIGN: A mathematical model based on experimentally derived parameters. BACKGROUND: Musculoskeletal deterioration is common after spinal cord injury, often resulting in osteoporotic bone and increased risk of lower extremity fracture. Potential mechanical treatments have yet to be shown to be efficacious; however, no previous attempts have been made to quantify the lower extremity loading during passive, active, and active-resistive stance. METHODS: A static, 2-D model was developed to estimate the external forces; the activated quadriceps forces; and the overall bone compression and shear forces in the distal femur during passive (total support of frame), active (quadriceps activated minimally), and active-resistive (quadriceps activated against a resistance) stance. RESULTS: Passive, active, and active-resistive stance resulted in maximal distal femur compression estimates of approximately 45%, approximately 75%, and approximately 240% of body weight, respectively. Quadriceps force estimates peaked at 190% of body weight with active-resistive stance. The distal femur shear force estimates never exceeded 24% of body weight with any form of stance. CONCLUSIONS: These results support our hypothesis that active-resistive stance induces the highest lower extremity loads of the three stance paradigms, while keeping shear to a minimum. RELEVANCE: This model allows clinicians to better understand the lower extremity forces resulting from passive, active, and active-resistive stance in individuals with spinal cord injury.

Posted on Leave a comment

Bone loss and muscle atrophy in spinal cord injury: epidemiology, fracture prediction, and rehabilitation strategies.

date: 01/01/2006
author: Giangregorio L, McCartney N.
publication: J Spinal Cord Med. 2006;29(5):489-500.
pubmed_ID: 17274487

Individuals with spinal cord injury (SCI) often experience bone loss and muscle atrophy. Muscle atrophy can result in reduced metabolic rate and increase the risk of metabolic disorders. Sublesional osteoporosis predisposes individuals with SCI to an increased risk of low-trauma fracture. Fractures in people with SCI have been reported during transfers from bed to chair, and while being turned in bed. The bone loss and muscle atrophy that occur after SCI are substantial and may be influenced by factors such as completeness of injury or time post injury. A number of interventions, including standing, electrically stimulated cycling or resistance training, and walking exercises have been explored with the aim of reducing bone loss and/or increasing bone mass and muscle mass in individuals with SCI. Exercise with electrical stimulation appears to increase muscle mass and/or prevent atrophy, but studies investigating its effect on bone are conflicting. Several methodological limitations in exercise studies with individuals with SCI to date limit our ability to confirm the utility of exercise for improving skeletal status. The impact of standing or walking exercises on muscle and bone has not been well established. Future research should carefully consider the study design, skeletal measurement sites, and the measurement techniques used in order to facilitate sound conclusions.