Lower extremity muscle activation and function in progressive task-oriented training on the supplementary tilt table during stepping-like movements in patients with acute stroke hemiparesis.

date: 2015 Jun;25(3):522-30
author: Kim C-Y.
publication: J Electromyogr Kinesiol.
PubMed ID:25863464

Abstract

An effective and standardized method for applying a tilt table as a supplementary treatment in the early rehabilitation of stroke patients is still missing. The aim of this study was to determine the influence of progressive task-oriented training on the tilt table on the improvement in lower extremity (LE) muscle activation and clinical function in subjects with hemiplegia due to stroke. Thirty-nine subjects with acute stroke were randomly allocated to three groups; control group, tilt table group, and task-oriented training group on the tilt table, with 13 patients, respectively. All of the subjects received the routine therapy for half an hour, and subjects in the experimental groups additionally received training on two different tilt table applications for 20min a day, five times a week for three weeks. The effect of tilt table applications was assessed using the surface electromyography (EMG) analysis during stepping-like movements on the tilt table for LE muscle activation and clinical scores for function. Our results showed that there was a significantly greater increase in the EMG patterns of the extensors and flexors of the affected leg muscles during flexion and extension movements of both legs and clinical scores in patients undergoing the progressive task-oriented training on the tilt table compared to the other groups. These findings suggest that progressive task-oriented training on the tilt table can improve LE muscle activation and clinical scores of functional performance for early rehabilitation of subjects with acute stroke.

Effects of a standing table on work productivity and posture in an adult with developmental disabilities.

date: 1997;9(1):13-20. doi
author: Nelson D.
publication: Work
PubMed ID:24441921

Abstract

The standing table is an assistive device designed to encourage occupational performance of the upper extremities while helping the person compensate for limitations in standing posture. We conducted three single-subject studies of a standing table used by a 52-year-old man with spastic cerebral palsy and mental retardation. In the first study, positioning in the standing table resulted in no discernible difference in work output per hour in comparison to his customary seated posture. In the second study, positioning in the standing table resulted in an unexpectedly small increase in work output in comparison to his customary method of standing without special support at the work bench. In the third study, we demonstrated that the standing table dramatically improved the erectness of his posture as measured by an infrared motion detector in comparison to his customary method of standing. Because work productivity depends on multiple factors, improved posture and biomechanical stability do no always result in a proportionate improvement in work output. There remain multiple justifications of equipment such as the standing table in work settings for adults with developmental disabilities.

Effects of a standing table on work productivity and posture in an adult with developmental disabilities.

date:1997;9(1):13-20.
author: Nelson DL1, Schau EM1.
publication: Work
pubmed_ID: 24441921

 

Abstract

The standing table is an assistive device designed to encourage occupational performance of the upper extremities while helping the person compensate for limitations in standing posture. We conducted three single-subject studies of a standing table used by a 52-year-old man with spastic cerebral palsy and mental retardation. In the first study, positioning in the standing table resulted in no discernible difference in work output per hour in comparison to his customary seated posture. In the second study, positioning in the standing table resulted in an unexpectedly small increase in work output in comparison to his customary method of standing without special support at the work bench. In the third study, we demonstrated that the standing table dramatically improved the erectness of his posture as measured by an infrared motion detector in comparison to his customary method of standing. Because work productivity depends on multiple factors, improved posture and biomechanical stability do no always result in a proportionate improvement in work output. There remain multiple justifications of equipment such as the standing table in work settings for adults with developmental disabilities

The effect of positioning on the hand function of boys with cerebral palsy.

date: 1989 Aug;43(8):507-12.
author: Noronha J1, Bundy A, Groll J.
publication: Am J Occup Ther.
pubmed_ID: 2774051

 

Abstract

The effect of positioning (sitting and prone standing) on the hand function of 10 boys (mean age = 12.5 years, SD = 1.2 years) with spastic diplegic cerebral palsy was studied. Two groups of subjects were tested twice (Tests 1 and 2) with the Jebsen-Taylor Hand Function Test (Jebsen, Taylor, Treischmann, Trotter, & Howard, 1969; Taylor, Sand, & Jebsen, 1973) to measure rate of manipulation. In addition, a scale modified from Hohlstein (1982) was used to measure quality of grasp on each subtest of the Jebsen-Taylor test. No significant differences between the mean scores of the two groups were found on the total scores of the Jebsen-Taylor test, either between Tests 1 and 2 or between sitting and prone standing. When the data from Tests 1 and 2 were combined, it was found that on one subtest–simulated feeding–the subjects performed significantly faster while in a prone standing position. On another subtest–picking up small objects–the subjects performed significantly faster while in a sitting position. Except during the simulated feeding subtest, the quality of the subjects’ grasp was observed to be mature and tailored to the objects manipulated. This paper presents considerations for analyzing positioning in relation to upper extremity tasks.

Systematic review of the health benefits of physical activity and fitness in school-aged children and youth.date:

date: 2010 May 11;7:40.
author: Janssen I1, Leblanc AG.
publication: Int J Behav Nutr Phys Act.
pubmed_ID: 20459784

 

Abstract

BACKGROUND:

The purpose was to: 1) perform a systematic review of studies examining the relation between physical activity, fitness, and health in school-aged children and youth, and 2) make recommendations based on the findings.

METHODS:

The systematic review was limited to 7 health indicators: high blood cholesterol, high blood pressure, the metabolic syndrome, obesity, low bone density, depression, and injuries. Literature searches were conducted using predefined keywords in 6 key databases. A total of 11,088 potential papers were identified. The abstracts and full-text articles of potentially relevant papers were screened to determine eligibility. Data was abstracted for 113 outcomes from the 86 eligible papers. The evidence was graded for each health outcome using established criteria based on the quantity and quality of studies and strength of effect. The volume, intensity, and type of physical activity were considered.

RESULTS:

Physical activity was associated with numerous health benefits. The dose-response relations observed in observational studies indicate that the more physical activity, the greater the health benefit. Results from experimental studies indicate that even modest amounts of physical activity can have health benefits in high-risk youngsters (e.g., obese). To achieve substantive health benefits, the physical activity should be of at least a moderate intensity. Vigorous intensity activities may provide even greater benefit. Aerobic-based activities had the greatest health benefit, other than for bone health, in which case high-impact weight bearing activities were required.

CONCLUSION:

The following recommendations were made: 1) Children and youth 5-17 years of age should accumulate an average of at least 60 minutes per day and up to several hours of at least moderate intensity physical activity. Some of the health benefits can be achieved through an average of 30 minutes per day. [Level 2, Grade A]. 2) More vigorous intensity activities should be incorporated or added when possible, including activities that strengthen muscle and bone [Level 3, Grade B]. 3) Aerobic activities should make up the majority of the physical activity. Muscle and bone strengthening activities should be incorporated on at least 3 days of the week [Level 2, Grade A].

Whole-body vibration training compared with resistance training: effect on spasticity, muscle strength and motor performance in adults with cerebral palsy.

date: 2006 Sep;38(5):302-8.
author: Ahlborg L1, Andersson C, Julin P.
publication: J Rehabil Med.
pubmed_ID: 16931460

Abstract

OBJECTIVE:

The aim of this study was to evaluate the effect on spasticity, muscle strength and motor performance after 8 weeks of whole-body vibration training compared with resistance training in adults with cerebral palsy.

METHODS:

Fourteen persons with spastic diplegia (21-41 years) were randomized to intervention with either whole-body vibration training (n=7) or resistance training (n=7). Pre- and post-training measures of spasticity using the modified Ashworth scale, muscle strength using isokinetic dynamometry, walking ability using Six-Minute Walk Test, balance using Timed Up and Go test and gross motor performance using Gross Motor Function Measure were performed.

RESULTS:

Spasticity decreased in knee extensors in the whole-body vibration group. Muscle strength increased in the resistance training group at the velocity 30 degrees /s and in both groups at 90 degrees /s. Six-Minute Walk Test and Timed Up and Go test did not change significantly. Gross Motor Function Measure increased in the whole-body vibration group.

CONCLUSION:

These data suggest that an 8-week intervention of whole-body vibration training or resistance training can increase muscle strength, without negative effect on spasticity, in adults with cerebral palsy.

A systematic review of supported standing programs

date: 2010;3(3):197-213. doi: 10.3233/PRM-2010-0129.
author: Glickman LB1, Geigle PR, Paleg GS.
publication: J Pediatr Rehabil Med.
pubmed_ID:PMID:21791851

 

The routine clinical use of supported standing in hospitals, schools and homes currently exists. Questions arise as to the nature of the evidence used to justify this practice. This systematic review investigated the available evidence underlying supported standing use based on the Center for Evidence-Based Medicine (CEBM) Levels of Evidence framework.

DESIGN:

The database search included MEDLINE, CINAHL, GoogleScholar, HighWire Press, PEDro, Cochrane Library databases, and APTAs Hooked on Evidence from January 1980 to October 2009 for studies that included supported standing devices for individuals of all ages, with a neuromuscular diagnosis. We identified 112 unique studies from which 39 met the inclusion criteria, 29 with adult and 10 with pediatric participants. In each group of studies were user and therapist survey responses in addition to results of clinical interventions.

RESULTS:

The results are organized and reported by The International Classification of Function (ICF) framework in the following categories: b4: Functions of the cardiovascular, haematological, immunological, and respiratory systems; b5: Functions of the digestive, metabolic, and endocrine systems; b7: Neuromusculoskeletal and movement related functions; Combination of d4: Mobility, d8: Major life areas and Other activity and participation. The peer review journal studies mainly explored using supported standers for improving bone mineral density (BMD), cardiopulmonary function, muscle strength/function, and range of motion (ROM). The data were moderately strong for the use of supported standing for BMD increase, showed some support for decreasing hypertonicity (including spasticity) and improving ROM, and were inconclusive for other benefits of using supported standers for children and adults with neuromuscular disorders. The addition of whole body vibration (WBV) to supported standing activities appeared a promising trend but empirical data were inconclusive. The survey data from physical therapists (PTs) and participant users attributed numerous improved outcomes to supported standing: ROM, bowel/bladder, psychological, hypertonicity and pressure relief/bedsores. BMD was not a reported benefit according to the user group.

CONCLUSION:

There exists a need for empirical mechanistic evidence to guide clinical supported standing programs across practice settings and with various-aged participants, particularly when considering a life-span approach to practice.

Preliminary results on the mobility after whole body vibration in immobilized children and adolescents

date: 01/01/2007
author: Semler, O., Fricke, O., Vezyroglou, K., Stark, C., Schoenau, E.
publication: J Musculoskelet Neuronal Interact 2007; 7(1):77-81
pubmed_ID:17396011 
The present article is a preliminary report on the effect of Whole Body Vibration (WBV) on the mobility in long-term immobilized children and adolescents. WBV was applied to 6 children and adolescents (diagnoses: osteogenesis imperfecta, N=4; cerebral palsy, N=1; dysraphic defect of the lumbar spine, N=1) over a time period of 6 months. WBV was applied by a vibrating platform constructed on a tilt-table. The treatment effect was measured by alternations of the tilt-angle of the table and with the “Brief assessment of motor function” (BAMF). All 6 individuals were characterized by an improved mobility, which was documented by an increased tilt-angle or an improved BAMF-score. The authors concluded WBV might be a promising approach to improve mobility in severely motor-impaired children and adolescents. Therefore, the Cologne Standing-and-Walking-Trainer powered by Galileo is a suitable therapeutic device to apply WBV in immobilized children and adolescents.

Results of a prospective pilot trial on mobility after whole body vibration in children and adolescents with osteogenesis imperfecta

date: 06/01/2008
author: Semler O, Fricke O, Vezyroglou K, Stark C, Stabrey A, Schoenau E.
publication: Clinical Rehabilitation, Vol. 22, No. 5, 387-394 (2008)
pubmed_ID: 18441035
Abstract
Objective: To evaluate the effect of whole body vibration on the mobility of long-term immobilized children and adolescents with a severe form of osteogenesis imperfecta. Osteogenesis imperfecta is a hereditary primary bone disorder with a prevalence from 1 in 10000 to 1 in 20000 births. Most of these children are suffering from long-term immobilization after recurrent fractures. Due to the immobilization they are affected by loss of muscle (sarcopenia) and secondary loss of bone mass.

Subjects: Whole body vibration was applied to eight children and adolescents (osteogenesis imperfecta type 3, N=5; osteogenesis imperfecta type 4, N=3) over a period of six months.

Interventions and results: Whole body vibration was applied by a vibrating platform (Galileo Systems) constructed on a tilting-table. Success of treatment was assessed by measuring alterations of the tilting-angle and evaluating the mobility (Brief Assessment of Motor Function). All individuals were characterized by improved muscle force documented by an increased tilting-angle (median = 35 degrees) or by an increase in ground reaction force (median at start=30.0 [N/kg] (14.48?134.21); median after six months = 146.0 [N/kg] (42.46?245.25).

Conclusions: Whole body vibration may be a promising approach to improve mobility in children and adolescents severely affected with osteogenesis imperfecta.

Effects of Prolonged Standing on Gait in Children with Spastic Cerebral Palsy

date: 03/01/2005
author: Zabel, R J.; McMillan, A G.; Salem, Y
publication: Pediatric Physical Therapy:Volume 17(1)Spring 2005p 93
pubmed_ID:
Outside_URL:
PURPOSE/HYPOTHESIS: The purpose of this study was to determine the effects of prolonged standing on several gait variables in ambulatory children with spastic cerebral palsy.
NUMBER OF SUBJECTS: Six children with spastic derebral palsy participated in this study with an average age of 6.5 years (SD = 2.5, range = 4 – 9.8).
MATERIALS/METHODS: A reverse baseline design (A-B-A) was used. During phase A, the children received their usual physical therapy treatment. During phase B, children received the prolonged standing program three times per week, in addition to their usual physical therapy treatment. During phase A2, children received their usual physical therapy treatment. Three dimensional gait analysis was performed before and after each phase. The Modified Ashworth Scale was used to measure muscle tone. Anaylsis of variance (ANOVA) for repeated measures was used to test for changes in gait measures across four measurement sessions.
RESULTS: Stride length (P < 0.001), speed (P < 0.001), stride time (P < 0.001), stance phase time (P < 0.005), and muscle tone (P < 0.02) improved significantly following the intervention period. No significant differences were found in swing phase time, double support time, foot angle, knee flexion angle, knee moment or ankle power.
CONCLUSIONS: The results of this study suggest that children with spastic cerebral palsy could benefit from a prolonged standing program to improve their gait.
CLINICAL RELEVANCE: Prolonged standing may improve gait in children with cerebral palsy.