Bone loss and muscle atrophy in spinal cord injury: epidemiology, fracture prediction, and rehabilitation strategies.

date: 01/01/2006
author: Giangregorio L, McCartney N.
publication: J Spinal Cord Med. 2006;29(5):489-500.
pubmed_ID: 17274487

Individuals with spinal cord injury (SCI) often experience bone loss and muscle atrophy. Muscle atrophy can result in reduced metabolic rate and increase the risk of metabolic disorders. Sublesional osteoporosis predisposes individuals with SCI to an increased risk of low-trauma fracture. Fractures in people with SCI have been reported during transfers from bed to chair, and while being turned in bed. The bone loss and muscle atrophy that occur after SCI are substantial and may be influenced by factors such as completeness of injury or time post injury. A number of interventions, including standing, electrically stimulated cycling or resistance training, and walking exercises have been explored with the aim of reducing bone loss and/or increasing bone mass and muscle mass in individuals with SCI. Exercise with electrical stimulation appears to increase muscle mass and/or prevent atrophy, but studies investigating its effect on bone are conflicting. Several methodological limitations in exercise studies with individuals with SCI to date limit our ability to confirm the utility of exercise for improving skeletal status. The impact of standing or walking exercises on muscle and bone has not been well established. Future research should carefully consider the study design, skeletal measurement sites, and the measurement techniques used in order to facilitate sound conclusions.

Longitudinal changes in bone density in children and adolescents with moderate to severe cerebral palsy.

date: 06/01/2005
author: Henderson RC, Kairalla JA, Barrington JW, Abbas A, Stevenson RD.
publication: J Pediatr. 2005 Jun;146(6):769-75
pubmed_ID: 15973316

OBJECTIVE: To assess the natural history of “growth” in bone mineral density (BMD) in children and adolescents with moderate to severe cerebral palsy (CP). STUDY DESIGN: A prospective, longitudinal, observational study of BMD in 69 subjects with moderate to severe spastic CP ages 2.0 to 17.7 years. Fifty-five subjects were observed for more than 2 years and 40 subjects for more than 3 years. Each evaluation also included assessments of growth, nutritional status, Tanner stage, general health, and various clinical features of CP. RESULTS: Lower BMD z-scores at the initial evaluation were associated with greater severity of CP as judged by gross motor function and feeding difficulty, and with poorer growth and nutrition as judged by weight z-scores. BMD increased an average of 2% to 5%/y in the distal femur and lumbar spine, but ranged widely from +42%/y to -31%. In spite of increases in BMD, distal femur BMD z-scores decrease with age in this population. CONCLUSIONS: Children with severe CP develop over the course of their lives clinically significant osteopenia. Unlike elderly adults, this is not primarily from true losses in bone mineral, but from a rate of growth in bone mineral that is diminished relative to healthy children. The efficacy of interventions to increase BMD can truly be assessed only with a clear understanding of the expected changes in BMD without intervention.

Skeletal adaptations to alterations in weight-bearing activity: a comparison of models of disuse osteoporosis.

date: 01/01/2001
author: Giangregorio L, Blimkie CJ.
publication: Sports Med. 2002;32(7):459-76.
pubmed_ID: 12015807

The removal of regular weight-bearing activity generates a skeletal adaptive response in both humans and animals, resulting in a loss of bone mineral. Human models of disuse osteoporosis, namely bed rest, spinal cord injury and exposure to micro-gravity demonstrate the negative calcium balance, alterations in biochemical markers of bone turnover and resultant loss of bone mineral in the lower limbs that occurs with reduced weight-bearing loading. The site-specific nature of the bone response is consistent in all models of disuse; however, the magnitude of the skeletal adaptive response may differ across models. It is important to understand the various manifestations of disuse osteoporosis, particularly when extrapolating knowledge gained from research using one model and applying it to another. In rats, hindlimb unloading and exposure to micro-gravity also result in a significant bone response. Bone mineral is lost, and changes in calcium metabolism and biochemical markers of bone turnover similar to humans are noted. Restoration of bone mineral that has been lost because of a period of reduced weight bearing may be restored upon return to normal activity; however, the recovery may not be complete and/or may take longer than the time course of the original bone loss. Fluid shear stress and altered cytokine activity may be mechanistic features of disuse osteoporosis. Current literature for the most common human and animal models of disuse osteoporosis has been reviewed, and the bone responses across models compared.

Bone mineral density in children with cerebral palsy.

date: 04/01/2001
author: Tasdemir HA, Buyukavci M, Akcay F, Polat P, Yildiran A, Karakelleoglu C.
publication: Pediatr Int. 2001 Apr;43(2):157-60.
pubmed_ID: 11285068

BACKGROUND: The purpose of the present study was to evaluate the severity of and factors related to osteopenia in children with cerebral palsy (CP). METHODS: Bone mineral density (BMD), calcium (Ca), phosphate (P), alkaline phosphatase (ALP), creatinine, parathyroid hormone (PTH) and 25-hydroxy vitamin D3 (25OHD3) concentrations were determined in 24 children with CP (15 ambulant, nine non-ambulant), aged between 10 months and 12 years (mean (+/-SD) 4.1+/-2.9 years). These vaules were compared with data obtained from a control group. RESULTS: Adjusted mean BMD values were lower in the patient group than in controls (P<0.05). However, there was no difference between BMD values of ambulant and non-ambulant patients. The Ca and P levels of the patient group were significantly higher than those of controls (P<0.05). CONCLUSIONS: The present study showed that BMD was decreased in all children with CP, but to a greater extent in non-ambulant children with CP, and immobilization is the major effective factor on bone mineralization.

Physical rehabilitation as an agent for recovery after spinal cord injury.

date: 05/18/2007
author: Behrman AL, Harkema SJ.
publication: Phys Med Rehabil Clin N Am. 2007 May;18(2):183-202, v.
pubmed_ID: 17543768

The initial level of injury and severity of volitional motor and clinically detectable sensory impairment has been considered the most reliable for predicting neurologic recovery of function after spinal cord injury (SCI). This consensus implies a limited expectation for physical rehabilitation interventions as important in the facilitation of recovery of function. The development of pharmacologic and surgical interventions has always been pursued with the intent of altering the expected trajectory of recovery after SCI, but only recently physical rehabilitation strategies have been considered to improve recovery beyond the initial prognosis. This article reviews the recent literature reporting emerging activity-based therapies that target recovery of standing and walking based on activity-dependent neuroplasticity. A classification scheme for physical rehabilitation interventions is also discussed to aid clinical decision making.

Changes of tibia bone properties after spinal cord injury: effects of early intervention.

date: 02/01/1999
author: De Bruin ED, Frey-Rindova P, Herzog RE, Dietz V, Dambacher MA, Stussi E.
publication: Arch Physical Medicine Rehabilitation. 1999 Feb;80(2):214-20.
pubmed_ID: 10025500

OBJECTIVE: To evaluate the effectiveness of an early intervention program for attenuating bone mineral density loss after acute spinal cord injury (SCI) and to estimate the usefulness of a multimodality approach in diagnosing osteoporosis in SCI. DESIGN: A single-case, experimental, multiple-baseline design. SETTING: An SCI center in a university hospital. METHODS: Early loading intervention with weight-bearing by standing and treadmill walking. PATIENTS: Nineteen patients with acute SCI. OUTCOME MEASURES: (1) Bone density by peripheral computed tomography and (2) flexural wave propagation velocity with a biomechanical testing method. RESULTS: Analysis of the bone density data revealed a marked decrease of trabecular bone in the nonintervention subjects, whereas early mobilized subjects showed no or insignificant loss of trabecular bone. A significant change was observed in 3 of 10 subjects for maximal and minimal area moment of inertia. Measurements in 19 subjects 5 weeks postinjury revealed a significant correlation between the calculated bending stiffness of the tibia and the maximal and minimal area moment of inertia, respectively. CONCLUSION: A controlled, single-case, experimental design can contribute to an efficient tracing of the natural history of bone mineral density and can provide relevant information concerning the efficacy of early loading intervention in SCI. The combination of bone density and structural analysis could, in the long term, provide improved fracture risk prediction in patients with SCI and a refined understanding of the bone remodeling processes during initial immobilization after injury.

Physiologic responses to electrically assisted and frame-supported standing in persons with paraplegia.

date: 12/01/2003
author: Jacobs PL, Johnson B, Mahoney ET.
publication: J Spinal Cord Med. 2003 Winter;26(4):384-9.
pubmed_ID: 14992341

BACKGROUND: Systems of functional electrical stimulation (FES) have been demonstrated to enable some persons with paraplegia to stand and ambulate limited distances. However, the energy costs and acute physiologic responses associated with FES standing activities have not been well investigated. OBJECTIVE: To compare the physiologic responses of persons with paraplegia to active FES-assisted standing (AS) and frame-supported passive standing (PS). METHODS: Fifteen persons with paraplegia (T6-T11) previously habituated to FES ambulation, completed physiologic testing of PS and AS. The AS assessments were performed using a commercial FES system (Parastep-1; Altimed, Fresno, Calif); the PS tests used a commercial standing frame (Easy Stand 5000; Altimed, Fresno, Calif). Participants also performed a peak arm-cranking exercise (ACE) test using a progressive graded protocol in 3-minute stages and 10-watt power output increments to exhaustion. During all assessments, metabolic activity and heart rate (HR) were measured via open-circuit spirometry and 12-lead electrocardiography, respectively. Absolute physiologic responses to PS and AS were averaged over 1-minute periods at 5-minute intervals (5, 10, 15, 20, 25, and 30 minutes) and adjusted relative to peak values displayed during ACE to determine percentage of peak (%pk) values. Absolute and relative responses were compared between test conditions (AS and PS) and across time using two-way analysis of variance. RESULTS: The AS produced significantly greater values of VO2 (43%pk) than did PS (20%pk). The mean HR responses to PS (100-102 beats per minute [bpm] throughout) were significantly lower than during AS, which ranged from 108 bpm at 5 minutes to 132 bpm at test termination. CONCLUSION: Standing with FES requires significantly more energy than does AS and may provide a cardiorespiratory stress sufficient to meet minimal requirements for exercise conditioning.

Standing and its importance in spinal cord injury management.

date: 01/01/1987
author: Axelson P, Gurski D, Lasko-Harvill A.
publication: RESNA 10th Annual Conference San Jose, California 1987
A broad spectrum of physiological problems are associated with lack of gravitational stress in the individual with spinal cord injury. Prolonged immobilization results in systemic de-adaptations which include cardiovascular changes, the alteration of calcium homeostasis which leads to bone de-mineralization and risk of urinary calculi.

Weight bearing in the standing posture has been shown to ameliorate many of these problems and offers physiological advantages for the individual with spinal card injury.

There are also significant psychological and social benefits to standing, including improved self-image, and eye-to-eye interpersonal contact. Increased vocational, recreational and daily living independence are additional benefits of standing.

Mobility status and bone density in cerebral palsy.

date: 08/01/1996
author: Wilmshurst S, Ward K, Adams JE, Langton CM, Mughal MZ.
publication: Arch Dis Child. 1996 Aug;75(2):164-5.
pubmed_ID: 8869203

The spinal bone mineral density (SBMD) and calcaneal broadband ultrasound attenuation (BUA) was measured in 27 children with cerebral palsy. They were categorised into four mobility groups: mobile with an abnormal gait, mobile with assistance, non-mobile but weight bearing, non-mobile or weight bearing. Mean SD scores for BUA and SBMD differed among mobility groups (analysis of variance, p < 0.001 and p = 0.078, respectively).

Moving the arms to activate the legs.

date: 07/01/2006
author: Ferris DP, Huang HJ, Kao PC.
publication: Exerc Sport Sci Rev. 2006 Jul;34(3):113-20.
pubmed_ID: 16829738

Recent studies on neurologically intact individuals and individuals with spinal cord injury indicate that rhythmic upper limb muscle activation has an excitatory effect on lower limb muscle activation during locomotor-like tasks. This finding suggests that gait rehabilitation therapy after neurological injury should incorporate simultaneous upper limb and lower limb rhythmic exercise to take advantage of neural coupling.