Reduction of muscular hypertonus by long-term muscle stretch.

date: 01/01/1981
author: Odeen I.
publication: Scand J Rehabilitation Medicine. 1981;13(2-3):93-9.
pubmed_ID: 7345572

In 10 patients with spastic paraparesis, the effect of long-term stretch on hip adductor muscle tone was studied. Stretch was accomplished by using a mechanical leg-abductor device giving individually adjusted adductor muscle stretch in single or repeated 30 min periods. The effect on muscle tone was estimated from surface EMG activity and by range of voluntary and passive hip abduction. The passive movements were obtained by an individually adjusted constant pulling force. After a single session of stretch, range of voluntary hip abduction increased 3 to 16 degrees (average 85%). Range of passive movement increased 1 to 9 degrees (average 23%). After repeated stretch periods in a home program (4 patients), range of voluntary hip abduction increased 5 to 22 degrees (average 255%). Range of passive movements increased 6 to 12 degrees (average 48%). In all patients studied the co-activation of the antagonists in voluntary hip abduction was reduced after a stretch session.

Nonoperative treatment of osteogenesis imperfecta: orthotic and mobility management.

date: 09/01/1981
author: Bleck EE.
publication: Clin Orthop Relat Res. 1981 Sep;(159):111-22.
pubmed_ID: 7285447

The problem of osteoporosis superimposed on the basic collagen defect of osteogenesis imperfecta has been approached by the use of plastic containment orthoses for the lower limbs, in addition to developmentally staged mobility devices that assist early standing and walking. The purpose of forcing early weight-bearing is to provide stress to the lower limb bones in order to minimize osteoporosis, prevent refracture and deformity, and curb subsequent immobilization osteoporosis, thus breaking a vicious cycle. Management goals are based upon adult needs for independence: efficiency in daily living activities and in mobility. These goals were reached in most of our patients via use of plastic orthoses, early weight-bearing, and electrically powered wheelchairs. Manual osteoclasis of the tibia followed by plastic orthoses utilizing principles of fluid compression to support fractured or structurally weak bones appeared successful at the time of follow-up. Intramedullary rodding of the femur was necessary in most of the 12 children with osteogenesis imperfecta congenita. Supplementary plastic orthoses have reduced the refracture rate in both the tibia and the femur. Social integration of the children was reflected by the fact that among the 12 OI congenita cases, ten were attending regular educational institutions. Twelve OI tarda children fared well, all attaining complete independence in daily living, mobility and ambulation. Seven of this group were treated with intramedullary rodding of the femur or tibia and with plastic orthoses. Five patients required no treatment.

Reliability and comparison of weight-bearing ability during standing tasks for individuals with chronic stroke.

date: 08/01/2002
author: Eng JJ, Chu KS.
publication: Arch Phys Med Rehabilitation. 2002 Aug;83(8):1138-44.
pubmed_ID: 12161837

OBJECTIVES: To determine the test-retest reliability over 2 separate days for weight-bearing ability during standing tasks in individuals with chronic stroke and to compare the weight-bearing ability among 5 standing tasks for the paretic and nonparetic limbs. DESIGN: Prospective study using a convenient sample. SETTING: Free-standing tertiary rehabilitation center. PARTICIPANTS: Fifteen community-dwelling stroke individuals with moderate motor deficits; volunteer sample. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Weight-bearing ability as measured by the vertical ground reaction force during 5 standing tasks (rising from a chair, quiet standing, weight-shifting forward, backward, laterally). RESULTS: The weight-bearing ability was less for the paretic limb compared with the nonparetic limb, but the intraclass correlation coefficients were high (.95-.99) for both limbs between the 2 sessions for all 5 tasks. The forward weight-shifting ability was particularly low in magnitude on the paretic side compared with the other weight-shifting tasks. In addition, the forward weight-shift ability of the nonparetic limb was also impaired but to a lesser extent. Large asymmetry was evident when rising from a chair, with the paretic limb bearing a mean 296N and the nonparetic side bearing a mean 458N. The weight-bearing ability during all 5 tasks correlated with one another (r range,.56-.94). CONCLUSIONS: Weight-bearing ability can be reliably measured and may serve as a useful outcome measure in individuals with stroke. We suggest that impairments of the hemiparetic side during forward weight shifting and sit-to-stand tasks presents a challenge to the motor systems of individuals with stroke, which may account for the poor balance that is often observed in these individuals. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation.

Contractures secondary to immobility: is the restriction articular or muscular? An experimental longitudinal study in the rat knee.

date: 01/01/2000
author: Trudel G, Uhthoff HK.
publication: Arch Phys Med Rehabilitation. 2000 Jan;81(1):6-13.
pubmed_ID: 10638868

OBJECTIVES: To measure articular structures’ contribution to the limitation of range of motion after joint immobility. STUDY DESIGN: Experimental, controlled study involving 40 adult rats that had one knee joint immobilized in flexion for durations of 2, 4, 8, 16, and 32 weeks; 20 rats underwent a sham procedure. The angular displacement was measured both in flexion and extension at three different torques. Myotomy of transarticular muscles allowed isolation of the arthrogenic component of the contracture. RESULTS: A contracture developed in all immobilized knees. The articular structures were incrementally responsible for the limitation in range of motion (from 12.6 degrees +/-6.7 degrees at 2 weeks to 51.4 degrees +/-5.4 degrees at 32 weeks). The myogenic restriction proportionately decreased over time (from 20.1 degrees +/-8.4 degrees at 2 weeks to only 0.8 degrees +/-7.2 degrees at 32 weeks). The increase in the arthrogenic component of contracture was predominant in extension. CONCLUSION: This study quantified the increasing role of arthrogenic changes in limiting the range of motion of joints after immobility, especially as the period of immobility extended past 2 weeks. These data provide a better understanding of joint contracture development and can be used to guide therapeutic approaches.

Tilt table standing for reducing spasticity after spinal cord injury.

date: 10/01/1993
author: Bohannon RW
publication: Arch Physical Medicine Rehabilitation. 1993 Oct;74(10):1121-2.
pubmed_ID: 8215868

A patient with a T12 spinal cord injury and intractable extensor spasms of the lower extremities participated in tilt table standing trial on 5 nonconsecutive days to determine if the intervention would affect his spasticity and spasms. Each day’s standing trial was followed by an immediate reduction in lower extremity spasticity (measured using the modified Ashworth scale and pendulum testing). Standing was also accompanied by a reduction in spasms that lasted until the following morning. The reduction of spasms was particularly advantageous to the performance of car transfers. Tilt table standing merits further examination as a physical treatment of spasms that accompany central nervous system lesions.