Posted on Leave a comment

Contractures secondary to immobility: is the restriction articular or muscular? An experimental longitudinal study in the rat knee.

date: 01/01/2000
author: Trudel G, Uhthoff HK.
publication: Arch Phys Med Rehabilitation. 2000 Jan;81(1):6-13.
pubmed_ID: 10638868

OBJECTIVES: To measure articular structures’ contribution to the limitation of range of motion after joint immobility. STUDY DESIGN: Experimental, controlled study involving 40 adult rats that had one knee joint immobilized in flexion for durations of 2, 4, 8, 16, and 32 weeks; 20 rats underwent a sham procedure. The angular displacement was measured both in flexion and extension at three different torques. Myotomy of transarticular muscles allowed isolation of the arthrogenic component of the contracture. RESULTS: A contracture developed in all immobilized knees. The articular structures were incrementally responsible for the limitation in range of motion (from 12.6 degrees +/-6.7 degrees at 2 weeks to 51.4 degrees +/-5.4 degrees at 32 weeks). The myogenic restriction proportionately decreased over time (from 20.1 degrees +/-8.4 degrees at 2 weeks to only 0.8 degrees +/-7.2 degrees at 32 weeks). The increase in the arthrogenic component of contracture was predominant in extension. CONCLUSION: This study quantified the increasing role of arthrogenic changes in limiting the range of motion of joints after immobility, especially as the period of immobility extended past 2 weeks. These data provide a better understanding of joint contracture development and can be used to guide therapeutic approaches.

Posted on Leave a comment

Extent and direction of joint motion limitation after prolonged immobility: an experimental study in the rat.

date: 12/01/1999
author: Trudel G, Uhthoff HK, Brown M.
publication: Arch Phys Med Rehabilitation. 1999 Dec;80(12):1542-7.
pubmed_ID: 10597804

OBJECTIVES: To test the hypotheses that contractures progress at different rates in relation to the time after immobilization, that immobilization in flexion leads to loss of extension range of motion, and that joints of sham-operated animals are better controls than the contralateral joint of experimental animals. STUDY DESIGN: Experimental, controlled study in which 40 adult rats had one knee joint immobilized at 135 degrees of flexion for up to 32 weeks and 20 animals underwent a sham procedure. At intervals of 2, 4, 8, 16, and 32 weeks, 8 experimental and 4 sham-operated animals were killed and their knee motion measured in flexion and extension. RESULTS: In the experimental group, the range of motion decreased in the first 16 weeks of immobility at an average rate of 3.8 degrees per week (p<.0001) to reach 61.1 degrees of restriction. A plateau was then observed from which the contracture did not progress further. The loss in range of motion occurred in extension, not in flexion. CONCLUSION: This study defined an acute stage of contractures starting at the onset of immobility and lasting 16 weeks, during which the range of motion was progressively restricted, and a chronic stage during which no additional limitation was detected. The loss in motion was attributed to posterior knee structures not under tension during immobilization in flexion. Contrary to the hypothesis, the contralateral joint was validated as a control choice for range-of-motion experiments.