date: 2012 Apr;91(4):300-8. doi
author: Bernhardt KA
publication: Am J Phys Med Rehabil
PubMed ID:22407161
The aim of the study was to determine the proportion of body weight borne through the lower limbs in persons with complete motor paraplegia using a standing frame, with and without the support of their arms. We also examined the effect of low-magnitude whole-body vibration on loads borne by the lower limbs.
Vertical ground reaction forces (GRFs) were measured in 11 participants (six men and five women) with paraplegia of traumatic origin (injury level T3-T12) standing on a low-magnitude vibrating plate using a standing frame. GRFs were measured in four conditions: (1) no vibration with arms on standing frame tray, (2) no vibration with arms at side, (3) vibration with arms on tray, and (4) vibration with arms at side.
GRF with arms on tray, without vibration, was 0.76 ± 0.07 body weight. With arms at the side, GRF increased to 0.85 ± 0.12 body weight. With vibration, mean GRF did not significantly differ from no-vibration conditions for either arm positions. Oscillation of GRF with vibration was significantly different from no-vibration conditions (P < 0.001) but similar in both arm positions.
Men and women with paraplegia using a standing frame bear most of their weight through their lower limbs. Supporting their arms on the tray reduces the GRF by approximately 10% body weight. Low-magnitude vibration provided additional oscillation of the load-bearing forces and was proportionally similar regardless of arm position.