Posted on Leave a comment

Quantifying weight-bearing by children with cerebral palsy while in passive standers.

date: 12/01/2007
author: Herman D, May R, Vogel L, Johnson J, Henderson RC.
publication: Pediatr Phys Ther. 2007 Winter;19(4):283-7.
pubmed_ID: 18004195

PURPOSE: Children who are nonambulatory are placed into standers with the goal of providing benefits from weight-bearing. The purpose of this study was to quantify weight-bearing loads by children with cerebral palsy while in standers. METHODS: Electronic load-measuring footplates were fabricated specifically for this study. Weight-bearing loads were continuously measured in 19 children who were nonambulatory during routine 30-minute standing sessions (3-6 sessions/child, total 110 sessions). RESULTS: Weight-bearing ranged widely (23%-102%) with a mean of 68% of body weight. There was some variation over the course of a session and between different sessions, but more variance was noted between subjects. CONCLUSIONS: Actual weight borne in a stander is quite variable, and in some instances only a fraction of actual body weight. Further studies are required to delineate relevant factors and identify ways to maximize weight-bearing loads while in a stander.

Posted on Leave a comment

A randomized controlled trial of standing programme on bone mineral density in non-ambulant children with cerebral palsy.

date: 02/01/2004
author: Caulton JM, Ward KA, Alsop CW, Dunn G, Adams JE, Mughal MZ.
publication: Arch Dis Child. 2004 Feb;89(2):131-5.
pubmed_ID: 14736627

BACKGROUND: Severely disabled children with cerebral palsy (CP) are prone to low trauma fractures, which are associated with reduced bone mineral density. AIMS: To determine whether participation in 50% longer periods of standing (in either upright or semi-prone standing frames) would lead to an increase in the vertebral and proximal tibial volumetric trabecular bone mineral density (vTBMD) of non-ambulant children with CP. METHODS: A heterogeneous group of 26 pre-pubertal children with CP (14 boys, 12 girls; age 4.3-10.8 years) participated in this randomised controlled trial. Subjects were matched into pairs using baseline vertebral vTBMD standard deviation scores. Children within the pairs were randomly allocated to either intervention (50% increase in the regular standing duration) or control (no increase in the regular standing duration) groups. Pre- and post-trial vertebral and proximal tibial vTBMD was measured by quantitative computed tomography (QCT). RESULTS: The median standing duration was 80.5% (9.5-102%) and 140.6% (108.7-152.2%) of the baseline standing duration in the control group and intervention group respectively. The mean vertebral vTBMD in the intervention group showed an increase of 8.16 mg/cm3 representing a 6% mean increase in vertebral vTBMD. No change was observed in the mean proximal tibial vTBMD. CONCLUSION: A longer period of standing in non-ambulant children with CP improves vertebral but not proximal tibial vTBMD. Such an intervention might reduce the risk of vertebral fractures but is unlikely to reduce the risk of lower limb fractures in children with CP.

Posted on Leave a comment

Bone mineral density and fractures in boys with Duchenne muscular dystrophy.

date: 02/01/2000
author: Larson CM, Henderson RC.
publication: J Pediatr Orthop. 2000 Jan-Feb;20(1):71-4.
pubmed_ID: 10641693

The relationships between bone density, mobility, and fractures were assessed in 41 boys with Duchenne muscular dystrophy. Bone density in the lumbar spine was only slightly decreased while the boys were ambulatory (mean z-score, -0.8), but significantly decreased with loss of ambulation (mean z-score, -1.7). In contrast, bone density in the proximal femur was profoundly diminished even when gait was minimally affected (mean z-score, -1.6), and then progressively decreased to nearly 4 standard deviations below age-matched normals (mean z-score, -3.9). These are consistent with the findings that 18 (44%) of the boys sustained a fracture, 66% of these fractures involved the lower extremities, and there were no spinal compression fractures. Furthermore, four (44%) of nine boys who were walking with aids or support at the time of fracture never resumed walking after the fracture. Osteoporosis is most profound in the lower extremities of boys with Duchenne muscular dystrophy, and begins to develop early while still ambulating. Frequent fractures that may result in loss of ambulation are the clinical consequences.

Posted on Leave a comment

Effect of standing on spasticity, contracture, and osteoporosis in paralyzed males.

date: 01/01/1993
author: Kunkel CF, Scremin AM, Eisenberg B, Garcia JF, Roberts S, Martinez S.
publication: Arch Phys Med Rehabil. 1993 Jan;74(1):73-8.
pubmed_ID: 8420525

The effect of “standing” in a frame on spasticity (clinical assessment and H-reflex), contracture (lower extremity joint range of motion), and osteoporosis (dual photon absorptiometry) was studied in six paralyzed males (mean age 49 yr) who had been confined to wheelchairs for an average of 19 years. Standing time averaged 144 hours over a mean of 135 days. Clinical Assessment measured reflexes, tone, and clonus in the legs. Results revealed no important differences between initial and final scores for clinical assessment and joint range of motion. In three subjects for whom H-reflexes were found, latency and amplitude were not altered by “standing.” Bone density was normal in the lumbar spine but significantly reduced in the femoral neck. “Standing” did not modify the bone density in any site. A follow-up interview revealed that 67% of subjects continued to “stand” and felt healthier because of it. In summary, “standing” had no ill effects, did not alter measured variables, and had a positive psychological impact.

Posted on Leave a comment

Orthostasis and transcapillary fluid shifts.

date: 01/01/1995
author: Hinghofer-Szalkay HG.
publication: J Gravit Physiol. 1995;2(1):P131-3.
pubmed_ID: 11538896

Postural blood volume changes aggravate the regulation of arterial blood pressure and perfusion vis-a-vis the hydrostatic effects of orthostasis, ie, blood pooling below the hydrostatic indifferent points and reduced cardiac preload. Corresponding problems surface with extended passive standing, particularly in highly trained, dehydrated, or otherwise compromised subjects, or after long-lasting immobilization, as with space flight.

Posted on Leave a comment

Bone-mineral density in children and adolescents who have spastic cerebral palsy.

date:
author: Henderson RC, Lin PP, Greene WB.
publication: J Bone Joint Surg Am. 1995 Nov;77(11):1671-81.
pubmed_ID: 7593076

Bone-mineral density was studied in a heterogeneous group of 139 children (mean age, nine years; range, three to fifteen years) who had spastic cerebral palsy. The evaluation included serum analyses and a nutritional assessment based on a dietary history and anthropometric measurements. The bone-mineral density of the proximal parts of the femora and the lumbar spine was measured with dual-energy x-ray absorptiometry and was normalized for age against a series of ninety-five normal children and adolescents who served as controls. Bone-mineral density varied greatly but averaged nearly one standard deviation below the age-matched normal means for both the proximal parts of the femora (-0.92 standard deviation) and the lumbar spine (-0.80 standard deviation). Ambulatory status was the factor that best correlated with bone-mineral density. Nutritional status, assessed on the basis of caloric intake, skinfolds, and body-mass index, was the second most significant variable. The pattern of involvement, durations of immobilization in a cast, and a calcium intake of less than 500 milligrams per day were additional factors of less significance. The age when the child first walked, previous fractures, use of anticonvulsants, and serum vitamin-D levels did not correlate with bone-mineral density after adjustment for covariance with the ambulatory status and the nutritional status. Serum levels of calcium, phosphate, alkaline phosphatase, and osteocalcin were not reliable indicators of low bone-mineral density.

Posted on Leave a comment

Bone density and other possible predictors of fracture risk in children and adolescents with spastic quadriplegia.

date:
author: Henderson RC.
publication: Dev Med Child Neurol. 1997 Apr;39(4):224-7.
pubmed_ID: 9183259
:
Forty-three patients with spastic quadriplegia (mean age 7.9 years, range 3.3 to 17.2 years) underwent bone mineral density (BMD) measurement of the lumbar spine and were evaluated between 2.6 and 5.5 years (mean 3.8) later to determine whether this measurement had predicted risk of fracture over the subsequent period of observation. Other potential risk factors that were evaluated include body weight z score, serum vitamin D levels, previous fracture, and hip spica casting. The baseline measurements showed that BMD falls further below normal with increasing age and was more than one standard deviation below age-matched normal mean in 38 of the 43 patients. Fracture rate did not differ between those with low and those with very low spinal BMD. Similarly, serum vitamin D levels and body weight z scores were not predictive of fracture. However, fracture rate was over fourfold greater following spica casting and more than threefold greater following an initial fracture. Fracture rates in the study group were similar to those reported for age- and sex-matched normal children, though generally the location of the fractures and mechanisms of injury differed.

Posted on Leave a comment

Randomised trial of the effects of four weeks of daily stretch on extensibility of hamstring muscles in people with spinal cord injuries.

date: 01/01/2003
author: Harvey LA, Byak AJ, Ostrovskaya M, Glinsky J, Katte L, Herbert RD.
publication: Aust J Physiother. 2003;49(3):176-81.
pubmed_ID: 12952517

The aim of this assessor-blind randomised controlled trial was to determine the effect of four weeks of 30 minute stretches each weekday on extensibility of the hamstring muscles in people with recent spinal cord injuries. A consecutive sample of 16 spinal cord-injured patients with no or minimal voluntary motor power in the lower limbs and insufficient hamstring muscle extensibility to enable optimal long sitting were recruited. Subjects’ legs were randomly allocated to experimental and control conditions. The hamstring muscles of the experimental leg of each subject were stretched with a 30 Nm torque at the hip for 30 minutes each weekday for four weeks. The hamstring muscles of the contralateral leg were not stretched during this period. Extensibility of the hamstring muscles (hip flexion range of motion with knee extended, measured with a 48 Nm torque at the hip) of both legs was measured by a blinded assessor at the commencement of the study and one day after the completion of the four-week stretch period. Changes in hamstring muscle extensibility from initial to final measurements were calculated. The effect of stretching was expressed as the mean difference in these changes between stretched and non-stretched legs. The mean effect of stretching was 1 degree (95% CI -2 to 5 degrees). Four weeks of 30 minute stretches each weekday does not affect the extensibility of the hamstring muscle in people with spinal cord injuries.

Posted on Leave a comment

Bisphosphonates to treat osteopenia in children with quadriplegic cerebral palsy: a randomized, placebo-controlled clinical trial.

date: 11/01/2002
author: Henderson RC, Lark RK, Kecskemethy HH, Miller F, Harcke HT, Bachrach SJ.
publication: J Pediatr. 2002 Nov;141(5):644-51.
pubmed_ID: 12410192

OBJECTIVE: To evaluate in a double-blind, placebo-controlled clinical trial the safety and efficacy of intravenous pamidronate to treat osteopenia in nonambulatory children with cerebral palsy. STUDY DESIGN: Six pairs of subjects generally matched within each pair for age, sex, and race completed the protocol. One member of each pair randomly received plain saline placebo, the other pamidronate. Drug/placebo was administered intravenously daily for 3 consecutive days, and this 3-day dosing session was repeated at 3-month intervals for one year. Evaluations were continued for 6 months after the year of treatment. Bone mineral density (BMD) was measured in the distal femur, a site specifically developed for use in this contracted population, and the lumbar spine. RESULTS: In the metaphyseal region of the distal femur, BMD increased 89% +/- 21% (mean +/- SEM) over the 18-month study period in the pamidronate group compared with 9% +/- 6% in the control group. Age-normalized z scores increased from -4.0 +/- 0.6 to -1.8 +/- 1.0 in the pamidronate group and did not significantly change in the control group (-4.2 +/- 0.3 to -4.0 +/- 0.3). The first dosing with pamidronate caused a transient drop in serum calcium that was asymptomatic and not treated. No other potentially adverse effects were noted. CONCLUSIONS: In this small controlled clinical trial, pamidronate was found to be a safe and very effective agent to increase BMD in nonambulatory children with cerebral palsy.

Posted on Leave a comment

Circulatory hypokinesis and functional electric stimulation during standing in persons with spinal cord injury.

date: 11/01/2001
author: Faghri PD, Yount JP, Pesce WJ, Seetharama S, Votto JJ.
publication: Arch Phys Med Rehabil. 2001 Nov;82(11):1587-95
pubmed_ID: 11689980
Outside_URL: http://www.ncbi.nlm.nih.gov/pubmed/11689980
OBJECTIVE: To evaluate the effects of functional electric stimulation (FES) of lower limb muscles during 30 minutes of upright standing on the central and peripheral hemodynamic response in persons with spinal cord injury (SCI). DESIGN: A repeated-measure design. Subjects were used as their own control and underwent 2 testing protocols of FES-augmented standing (active standing) and non-FES standing (passive standing). SETTING: Rehabilitation hospital. PARTICIPANTS: Fourteen individuals with SCI (7 with tetraplegia, 7 with paraplegia). INTERVENTIONS: During active standing, FES was administered to 4 muscle groups of each leg in an overlapping fashion to produce a pumping mechanism during standing. During passive standing, subjects stood for 30 minutes using a standing frame with no FES intervention. MAIN OUTCOME MEASURES: Central hemodynamic responses of stroke volume, cardiac output, heart rate, arterial blood pressure, total peripheral resistance (TPR), and rate pressure product (RPP) were evaluated by impedance cardiography. All measurements were performed during supine and sitting positions before and after standing, and during 30 minutes of upright standing. RESULTS: Comparisons between the groups with paraplegia and tetraplegia showed a significant increase in heart rate in the paraplegics after 30 minutes of active standing. During active standing, paraplegics’ heart rate increased by 18.2% (p = .015); during passive standing, it increased by 6% (p = .041). TPR in the tetraplegics significantly (p = .003) increased by 54% when compared with the paraplegics during passive standing. Overall, the tetraplegic group had a significantly lower systolic blood pressure (p = .013) and mean arterial pressure (p = .048) than the paraplegics during passive standing. These differences were not detected during active standing. When data were pooled from both groups and the overall groups response to active and passive standing were compared, the results showed that cardiac output, stroke volume, and blood pressure significantly decreased (p < .05) during 30 minutes of passive standing, whereas TPR significantly increased (p < .05). All of the hemodynamic variables were maintained during 30 minutes of active standing, and there were increases in RPP and heart rate after 30 minutes of active standing. CONCLUSION: FES of the lower extremity could be used by persons with SCI as an adjunct during standing to prevent orthostatic hypotension and circulatory hypokinesis. This effect may be more beneficial to those with tetraplegia who have a compromised autonomic nervous system and may not be able to adjust their hemodynamics to the change in position. Copyright 2001 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation