Posted on Leave a comment

Bone mineral content in preterm infants at age 4 to 16.

date: 03/01/1985
author: Helin I, Landin LA, Nilsson BE.
publication: Acta Paediatr Scand. 1985 Mar;74(2):264-7.
pubmed_ID: 3993373

Using photon absorptiometry the forearm bone mineral content (BMC) was determined in 75 children aged 4 to 16, who all had a low birth weight. Forty-five of them were born preterm AGA (27 boys, 18 girls, mean weight 1 580 g; range 920-2 060 g) and 30 preterm SGA (17 boys, 13 girls, mean weight 1510; range 940-2130 g). The results were compared with a control group of children of the same age, and analyses of covariance with age, height and weight as the covariant factors were performed. The BMC, weight and height did not differ between the children born AGA or SGA. Irrespective of AGA or SGA, the BMC was significantly decreased in boys but the difference was less pronounced and less significant when height and weight were used as covariant factors. Boys who had been born preterm had a less BMC than the control boys for their age but they were also somewhat shorter and lighter than expected with regard to their age.

Posted on Leave a comment

Bone density and other possible predictors of fracture risk in children and adolescents with spastic quadriplegia.

date:
author: Henderson RC.
publication: Dev Med Child Neurol. 1997 Apr;39(4):224-7.
pubmed_ID: 9183259
:
Forty-three patients with spastic quadriplegia (mean age 7.9 years, range 3.3 to 17.2 years) underwent bone mineral density (BMD) measurement of the lumbar spine and were evaluated between 2.6 and 5.5 years (mean 3.8) later to determine whether this measurement had predicted risk of fracture over the subsequent period of observation. Other potential risk factors that were evaluated include body weight z score, serum vitamin D levels, previous fracture, and hip spica casting. The baseline measurements showed that BMD falls further below normal with increasing age and was more than one standard deviation below age-matched normal mean in 38 of the 43 patients. Fracture rate did not differ between those with low and those with very low spinal BMD. Similarly, serum vitamin D levels and body weight z scores were not predictive of fracture. However, fracture rate was over fourfold greater following spica casting and more than threefold greater following an initial fracture. Fracture rates in the study group were similar to those reported for age- and sex-matched normal children, though generally the location of the fractures and mechanisms of injury differed.

Posted on Leave a comment

Bisphosphonates to treat osteopenia in children with quadriplegic cerebral palsy: a randomized, placebo-controlled clinical trial.

date: 11/01/2002
author: Henderson RC, Lark RK, Kecskemethy HH, Miller F, Harcke HT, Bachrach SJ.
publication: J Pediatr. 2002 Nov;141(5):644-51.
pubmed_ID: 12410192

OBJECTIVE: To evaluate in a double-blind, placebo-controlled clinical trial the safety and efficacy of intravenous pamidronate to treat osteopenia in nonambulatory children with cerebral palsy. STUDY DESIGN: Six pairs of subjects generally matched within each pair for age, sex, and race completed the protocol. One member of each pair randomly received plain saline placebo, the other pamidronate. Drug/placebo was administered intravenously daily for 3 consecutive days, and this 3-day dosing session was repeated at 3-month intervals for one year. Evaluations were continued for 6 months after the year of treatment. Bone mineral density (BMD) was measured in the distal femur, a site specifically developed for use in this contracted population, and the lumbar spine. RESULTS: In the metaphyseal region of the distal femur, BMD increased 89% +/- 21% (mean +/- SEM) over the 18-month study period in the pamidronate group compared with 9% +/- 6% in the control group. Age-normalized z scores increased from -4.0 +/- 0.6 to -1.8 +/- 1.0 in the pamidronate group and did not significantly change in the control group (-4.2 +/- 0.3 to -4.0 +/- 0.3). The first dosing with pamidronate caused a transient drop in serum calcium that was asymptomatic and not treated. No other potentially adverse effects were noted. CONCLUSIONS: In this small controlled clinical trial, pamidronate was found to be a safe and very effective agent to increase BMD in nonambulatory children with cerebral palsy.

Posted on Leave a comment

Effect of standing on spasticity, contracture, and osteoporosis in paralyzed males.

date: 01/01/1993
author: Kunkel CF, Scremin AM, Eisenberg B, Garcia JF, Roberts S, Martinez S.
publication: Arch Phys Med Rehabil. 1993 Jan;74(1):73-8.
pubmed_ID: 8420525

The effect of “standing” in a frame on spasticity (clinical assessment and H-reflex), contracture (lower extremity joint range of motion), and osteoporosis (dual photon absorptiometry) was studied in six paralyzed males (mean age 49 yr) who had been confined to wheelchairs for an average of 19 years. Standing time averaged 144 hours over a mean of 135 days. Clinical Assessment measured reflexes, tone, and clonus in the legs. Results revealed no important differences between initial and final scores for clinical assessment and joint range of motion. In three subjects for whom H-reflexes were found, latency and amplitude were not altered by “standing.” Bone density was normal in the lumbar spine but significantly reduced in the femoral neck. “Standing” did not modify the bone density in any site. A follow-up interview revealed that 67% of subjects continued to “stand” and felt healthier because of it. In summary, “standing” had no ill effects, did not alter measured variables, and had a positive psychological impact.

Posted on Leave a comment

Bone mineral density and fractures in boys with Duchenne muscular dystrophy.

date: 02/01/2000
author: Larson CM, Henderson RC.
publication: J Pediatr Orthop. 2000 Jan-Feb;20(1):71-4.
pubmed_ID: 10641693

The relationships between bone density, mobility, and fractures were assessed in 41 boys with Duchenne muscular dystrophy. Bone density in the lumbar spine was only slightly decreased while the boys were ambulatory (mean z-score, -0.8), but significantly decreased with loss of ambulation (mean z-score, -1.7). In contrast, bone density in the proximal femur was profoundly diminished even when gait was minimally affected (mean z-score, -1.6), and then progressively decreased to nearly 4 standard deviations below age-matched normals (mean z-score, -3.9). These are consistent with the findings that 18 (44%) of the boys sustained a fracture, 66% of these fractures involved the lower extremities, and there were no spinal compression fractures. Furthermore, four (44%) of nine boys who were walking with aids or support at the time of fracture never resumed walking after the fracture. Osteoporosis is most profound in the lower extremities of boys with Duchenne muscular dystrophy, and begins to develop early while still ambulating. Frequent fractures that may result in loss of ambulation are the clinical consequences.

Posted on Leave a comment

The influence of activity on calcium metabolism.

date: 12/01/1985
author: Whedon GD.
publication: J Nutr Sci Vitaminol (Tokyo). 1985 Dec;31 Suppl:S41-4.
pubmed_ID: 3915756
Outside_URL: http://www.ncbi.nlm.nih.gov/pubmed/3915756
Many studies and observations have shown the bone-losing effects of physical inactivity of various forms. Contrariwise, less precise studies and observations have supported the reasonable premise that mechanical loading of the skeleton via physical activity shifts the balance of bone remodeling in favor of bone formation, and appears to do so at all ages. Some interesting starts have been made in research to discover the mechanisms of the action on bone of mechanical loading, but many pathways remain to be explored. Besides the mechanical forces, we need to know more about the interrelations of muscle function, probably mediated through muscle-tendon pull on periosteum, and more about other likely influences, notably changes in circulation to bones. The practical significance relative to calcium metabolism and aging of what has been learned thus far on the effects of activity, is that prolonged inactivity, either in a chair or in bed, is to be avoided, because of its deleterious effects, and that reasonably energetic gravitational exercise, such as walking or possibly jogging, promotes maintenance of bone health.

Posted on Leave a comment

Low magnitude mechanical loading is osteogenic in children with disabling conditions.

date: 03/19/2004
author: Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z.
publication: J Bone Miner Res. 2004 Mar;19(3):360-9. Epub 2004 Jan 27.
pubmed_ID: 15040823

The osteogenic potential of short durations of low-level mechanical stimuli was examined in children with disabling conditions. The mean change in tibia vTBMD was +6.3% in the intervention group compared with -11.9% in the control group. This pilot randomized controlled trial provides preliminary evidence that low-level mechanical stimuli represent a noninvasive, non-pharmacological treatment of low BMD in children with disabling conditions. INTRODUCTION: Recent animal studies have demonstrated the anabolic potential of low-magnitude, high-frequency mechanical stimuli to the trabecular bone of weight-bearing regions of the skeleton. The main aim of this prospective, double-blind, randomized placebo-controlled pilot trial (RCT) was to examine whether these signals could effectively increase tibial and spinal volumetric trabecular BMD (vTBMD; mg/ml) in children with disabling conditions. MATERIALS AND METHODS: Twenty pre-or postpubertal disabled, ambulant, children (14 males, 6 females; mean age, 9.1 +/- 4.3 years; range, 4-19 years) were randomized to standing on active (n = 10; 0.3g, 90 Hz) or placebo (n = 10) devices for 10 minutes/day, 5 days/week for 6 months. The primary outcomes of the trial were proximal tibial and spinal (L2) vTBMD (mg/ml), measured using 3-D QCT. Posthoc analyses were performed to determine whether the treatment had an effect on diaphyseal cortical bone and muscle parameters. RESULTS AND CONCLUSIONS: Compliance was 44% (4.4 minutes per day), as determined by mean time on treatment (567.9 minutes) compared with expected time on treatment over the 6 months (1300 minutes). After 6 months, the mean change in proximal tibial vTBMD in children who stood on active devices was 6.27 mg/ml (+6.3%); in children who stood on placebo devices, vTBMD decreased by -9.45 mg/ml (-11.9%). Thus, the net benefit of treatment was +15.72 mg/ml (17.7%; p = 0.0033). In the spine, the net benefit of treatment, compared with placebo, was +6.72 mg/ml, (p = 0.14). Diaphyseal bone and muscle parameters did not show a response to treatment. The results of this pilot RCT have shown for the first time that low-magnitude, high-frequency mechanical stimuli are anabolic to trabecular bone in children, possibly by providing a surrogate for suppressed muscular activity in the disabled. Over the course of a longer treatment period, harnessing bone’s sensitivity to these stimuli may provide a non-pharmacological treatment for bone fragility in children.

Posted on Leave a comment

Pathological fractures in patients with cerebral palsy.

date: 10/01/1996
author: Brunner R, Doderlein L.
publication: J Pediatr Orthop B. 1996 Fall;5(4):232-8. Comment in: J Pediatr Orthop B. 1996 Fall;5(4):223-4.
pubmed_ID: 8897254

A retrospective study was made of 37 patients with 54 fractures that occurred without significant trauma. The morbidity and causes of these pathological fractures in patients with cerebral palsy were analyzed. The major causes for the fractures were long and fragile lever arms and stiffness in major joints, particularly the hips and knees. An additional factor was severe osteoporosis following a long period of postoperative immobilization. Seventy-four percent of the fractures occurred in the femoral shaft and supracondylar region. Stress fractures were rare (7%) and involved only the patella. Conservative treatment was sufficient in most cases but surgical fixation provided a good alternative for fractures of the femoral shaft. Intraarticular fractures with joint incongruity resulted in a decreased level of activity of the patient. Since osteoporosis is a major risk factor, patients with cerebral palsy should bear weight to prevent pathological fractures. Any stiffness of major joints and extended periods of immobilization should be avoided.

Posted on Leave a comment

Bone density and metabolism in children and adolescents with moderate to severe cerebral palsy.

date: 07/01/2002
author: Henderson RC, Lark RK, Gurka MJ, Worley G, Fung EB, Conaway M, Stallings VA, Stevenson RD.
publication: Pediatrics. 2002 Jul;110(1 Pt 1):e5.
pubmed_ID: 12093986

OBJECTIVES: Diminished bone density and a propensity to fracture with minimal trauma are common in children and adolescents with moderate to severe cerebral palsy (CP). The purpose of this study was to provide a detailed evaluation of bone mineral density (BMD) and metabolism in this population and to assess the relationship of these measures to multiple other clinical, growth, and nutrition variables. METHODS: The study group consisted of 117 subjects ages 2 to 19 years (mean: 9.7 years) with moderate to severe CP as defined by the Gross Motor Functional Classification scale. Population-based sampling was used to recruit 62 of the participants, which allows for estimations of prevalence. The remaining 55 subjects were a convenience sampling from both hospital- and school-based sources. The evaluation included measures of BMD, a detailed anthropometric assessment of growth and nutritional status, medical and surgical history, the Child Health Status Questionnaire, and multiple serum analyses. BMD was measured in the distal femur, a site specifically developed for use in this contracted population, and the lumbar spine. BMD measures were converted to age and gender normalized z scores based on our own previously published control series (n > 250). RESULTS: Osteopenia (BMD z score <-2.0) was found in the femur of 77% of the population-based cohort and in 97% of all study participants who were unable to stand and were older than 9 years. BMD was not as low in the lumbar spine (population-based cohort mean +/- standard error z score: -1.8 +/- 0.1) as in the distal femur (mean z score: -3.1 +/- 0.2). Fractures had occurred in 26% of the children who were older than 10 years. Multiple clinical and nutritional variables correlated with BMD z scores, but interpretation of these findings is complicated by covariance among variables. In stepwise regression analyses, it was found that severity of neurologic impairment as graded by Gross Motor Functional Classification level, increasing difficulty feeding the child, use of anticonvulsants, and lower triceps skinfold z scores (in decreasing order of importance) all independently contribute to lower BMD z scores in the femur. CONCLUSIONS: Low BMD is prevalent in children with moderate to severe CP and is associated with significant fracture risk. The underlying pathophysiology is complex, with multiple factors contributing to the problem and significant variation between different regions of the skeleton.

Posted on Leave a comment

Modulation of bone loss during calcium insufficiency by controlled dynamic loading.

date: 04/01/1986
author: Lanyon LE, Rubin CT, Baust G.
publication: Calcif Tissue Int. 1986 Apr;38(4):209-16.
pubmed_ID: 3085898

Changes in the midshaft cross-sectional area of the ulna were measured in egg-laying turkeys on a diet insufficient in calcium. Left:right comparisons were used to assess the bone loss over a six-week period due to 1) calcium insufficiency, 2) calcium insufficiency plus disuse, and 3) calcium insufficiency and disuse interrupted by a short daily period of intermittent loading applied from an external device. Calcium insufficiency alone in the intact ulna resulted in a 15% reduction in cross-sectional area. In the functionally deprived bones this loss was increased to 32%. In bones where the disuse was interrupted by a single short daily period of loading, the degree of bone loss was significantly modified (P less than 0.006) to 25%. No significant difference in the modulating effect of loading was achieved by varying the peak strain from 0.0015 to 0.003, the strain rate from 0.01 to 0.05, or the duration of the single loading period from 100 sec per day to 25 minutes. All the loading regimes employed had been demonstrated to be osteogenic in mature male birds on a diet sufficient in calcium.