Posted on Leave a comment

Bone density and metabolism in children and adolescents with moderate to severe cerebral palsy.

date: 07/01/2002
author: Henderson RC, Lark RK, Gurka MJ, Worley G, Fung EB, Conaway M, Stallings VA, Stevenson RD.
publication: Pediatrics. 2002 Jul;110(1 Pt 1):e5.
pubmed_ID: 12093986

OBJECTIVES: Diminished bone density and a propensity to fracture with minimal trauma are common in children and adolescents with moderate to severe cerebral palsy (CP). The purpose of this study was to provide a detailed evaluation of bone mineral density (BMD) and metabolism in this population and to assess the relationship of these measures to multiple other clinical, growth, and nutrition variables. METHODS: The study group consisted of 117 subjects ages 2 to 19 years (mean: 9.7 years) with moderate to severe CP as defined by the Gross Motor Functional Classification scale. Population-based sampling was used to recruit 62 of the participants, which allows for estimations of prevalence. The remaining 55 subjects were a convenience sampling from both hospital- and school-based sources. The evaluation included measures of BMD, a detailed anthropometric assessment of growth and nutritional status, medical and surgical history, the Child Health Status Questionnaire, and multiple serum analyses. BMD was measured in the distal femur, a site specifically developed for use in this contracted population, and the lumbar spine. BMD measures were converted to age and gender normalized z scores based on our own previously published control series (n > 250). RESULTS: Osteopenia (BMD z score <-2.0) was found in the femur of 77% of the population-based cohort and in 97% of all study participants who were unable to stand and were older than 9 years. BMD was not as low in the lumbar spine (population-based cohort mean +/- standard error z score: -1.8 +/- 0.1) as in the distal femur (mean z score: -3.1 +/- 0.2). Fractures had occurred in 26% of the children who were older than 10 years. Multiple clinical and nutritional variables correlated with BMD z scores, but interpretation of these findings is complicated by covariance among variables. In stepwise regression analyses, it was found that severity of neurologic impairment as graded by Gross Motor Functional Classification level, increasing difficulty feeding the child, use of anticonvulsants, and lower triceps skinfold z scores (in decreasing order of importance) all independently contribute to lower BMD z scores in the femur. CONCLUSIONS: Low BMD is prevalent in children with moderate to severe CP and is associated with significant fracture risk. The underlying pathophysiology is complex, with multiple factors contributing to the problem and significant variation between different regions of the skeleton.

Posted on Leave a comment

Changes in physical strain and physical capacity in men with spinal cord injuries.

date: 05/01/1996
author: Janssen TW, van Oers CA, Rozendaal EP, Willemsen EM, Hollander AP, van der Woude LH.
publication: Med Sci Sports Exerc. 1996 May;28(5):551-9.
pubmed_ID: 9148083

To determine longitudinal changes in physical capacity and physical strain during activities of daily living (ADL), 37 men with spinal cord injuries (C4/5-L5) performed an exercise test and various ADL on two occasions (T1 and T2; interval 34.5 +/- 1.5 months). Parameters of physical capacity were aerobic power (VO(2peak)) and maximal power output (PO(max)). Physical strain was estimated by the heart rate response relative to the heart rate reserve. VO(2peak) at T2 (1.75 +/- 0.55 1*min(1)) did not significantly differ from that at T1 (1.67 + 0.47 1*min(-1)). Absolute PO max improved (P < 0.05) from 64.9 +/- 25.9 (T1) to 71.7 +/- 27.2 W (T2), whereas relative PO(max) did not change. Activity level, time since injury, change in body mass, and occurrence of rehospitalization were the most important predictors of changes in physical capacity. Changes in relative VO(2peak) were related (P < 0.05) to changes in strain during transfers to the shower wheelchair (r = -0.39) and shower seat (r = -0.46), and during the curb ascent (r = -0.47). In conclusion, the hypothesized decline in physical capacity did not occur over the 3-yr period. Maintenance of physical capacity, which may in part be achieved through sport participation and improved medical care, together with avoidance of excessive body mass, may be useful to prevent high levels of strain during ADL.

Posted on Leave a comment

Locomotor training after human spinal cord injury: a series of case studies.

date: 07/01/2000
author: Behrman AL, Harkema SJ.
publication: Phys Ther. 2000 Jul;80(7):688-700.
pubmed_ID: 10869131

Many individuals with spinal cord injury (SCI) do not regain their ability to walk, even though it is a primary goal of rehabilitation. Mammals with thoracic spinal cord transection can relearn to step with their hind limbs on a treadmill when trained with sensory input associated with stepping. If humans have similar neural mechanisms for locomotion, then providing comparable training may promote locomotor recovery after SCI. We used locomotor training designed to provide sensory information associated with locomotion to improve stepping and walking in adults after SCI. Four adults with SCIs, with a mean postinjury time of 6 months, received locomotor training. Based on the American Spinal Injury Association (ASIA) Impairment Scale and neurological classification standards, subject 1 had a T5 injury classified as ASIA A, subject 2 had a T5 injury classified as ASIA C, subject 3 had a C6 injury classified as ASIA D, and subject 4 had a T9 injury classified as ASIA D. All subjects improved their stepping on a treadmill. One subject achieved overground walking, and 2 subjects improved their overground walking. Locomotor training using the response of the human spinal cord to sensory information related to locomotion may improve the potential recovery of walking after SCI.

Posted on Leave a comment

Changes of tibia bone properties after spinal cord injury: effects of early intervention.

date: 02/01/1999
author: De Bruin ED, Frey-Rindova P, Herzog RE, Dietz V, Dambacher MA, Stussi E.
publication: Arch Physical Medicine Rehabilitation. 1999 Feb;80(2):214-20.
pubmed_ID: 10025500

OBJECTIVE: To evaluate the effectiveness of an early intervention program for attenuating bone mineral density loss after acute spinal cord injury (SCI) and to estimate the usefulness of a multimodality approach in diagnosing osteoporosis in SCI. DESIGN: A single-case, experimental, multiple-baseline design. SETTING: An SCI center in a university hospital. METHODS: Early loading intervention with weight-bearing by standing and treadmill walking. PATIENTS: Nineteen patients with acute SCI. OUTCOME MEASURES: (1) Bone density by peripheral computed tomography and (2) flexural wave propagation velocity with a biomechanical testing method. RESULTS: Analysis of the bone density data revealed a marked decrease of trabecular bone in the nonintervention subjects, whereas early mobilized subjects showed no or insignificant loss of trabecular bone. A significant change was observed in 3 of 10 subjects for maximal and minimal area moment of inertia. Measurements in 19 subjects 5 weeks postinjury revealed a significant correlation between the calculated bending stiffness of the tibia and the maximal and minimal area moment of inertia, respectively. CONCLUSION: A controlled, single-case, experimental design can contribute to an efficient tracing of the natural history of bone mineral density and can provide relevant information concerning the efficacy of early loading intervention in SCI. The combination of bone density and structural analysis could, in the long term, provide improved fracture risk prediction in patients with SCI and a refined understanding of the bone remodeling processes during initial immobilization after injury.

Posted on Leave a comment

Physical rehabilitation as an agent for recovery after spinal cord injury.

date: 05/18/2007
author: Behrman AL, Harkema SJ.
publication: Phys Med Rehabil Clin N Am. 2007 May;18(2):183-202, v.
pubmed_ID: 17543768

The initial level of injury and severity of volitional motor and clinically detectable sensory impairment has been considered the most reliable for predicting neurologic recovery of function after spinal cord injury (SCI). This consensus implies a limited expectation for physical rehabilitation interventions as important in the facilitation of recovery of function. The development of pharmacologic and surgical interventions has always been pursued with the intent of altering the expected trajectory of recovery after SCI, but only recently physical rehabilitation strategies have been considered to improve recovery beyond the initial prognosis. This article reviews the recent literature reporting emerging activity-based therapies that target recovery of standing and walking based on activity-dependent neuroplasticity. A classification scheme for physical rehabilitation interventions is also discussed to aid clinical decision making.

Posted on Leave a comment

Mobility status and bone density in cerebral palsy.

date: 08/01/1996
author: Wilmshurst S, Ward K, Adams JE, Langton CM, Mughal MZ.
publication: Arch Dis Child. 1996 Aug;75(2):164-5.
pubmed_ID: 8869203

The spinal bone mineral density (SBMD) and calcaneal broadband ultrasound attenuation (BUA) was measured in 27 children with cerebral palsy. They were categorised into four mobility groups: mobile with an abnormal gait, mobile with assistance, non-mobile but weight bearing, non-mobile or weight bearing. Mean SD scores for BUA and SBMD differed among mobility groups (analysis of variance, p < 0.001 and p = 0.078, respectively).

Posted on Leave a comment

Shaping appropriate locomotive motor output through interlimb neural pathway within spinal cord in humans.

date: 06/01/2008
author: Kawashima N, Nozaki D, Abe MO, Nakazawa K.
publication: J Neurophysiol. 2008 Jun;99(6):2946-55. Epub 2008 Apr 30.
pubmed_ID: 18450579

Direct evidence supporting the contribution of upper limb motion on the generation of locomotive motor output in humans is still limited. Here, we aimed to examine the effect of upper limb motion on locomotor-like muscle activities in the lower limb in persons with spinal cord injury (SCI). By imposing passive locomotion-like leg movements, all cervical incomplete (n = 7) and thoracic complete SCI subjects (n = 5) exhibited locomotor-like muscle activity in their paralyzed soleus muscles. Upper limb movements in thoracic complete SCI subjects did not affect the electromyographic (EMG) pattern of the muscle activities. This is quite natural since neural connections in the spinal cord between regions controlling upper and lower limbs were completely lost in these subjects. On the other hand, in cervical incomplete SCI subjects, in whom such neural connections were at least partially preserved, the locomotor-like muscle activity was significantly affected by passively imposed upper limb movements. Specifically, the upper limb movements generally increased the soleus EMG activity during the backward swing phase, which corresponds to the stance phase in normal gait. Although some subjects showed a reduction of the EMG magnitude when arm motion was imposed, this was still consistent with locomotor-like motor output because the reduction of the EMG occurred during the forward swing phase corresponding to the swing phase. The present results indicate that the neural signal induced by the upper limb movements contributes not merely to enhance but also to shape the lower limb locomotive motor output, possibly through interlimb neural pathways. Such neural interaction between upper and lower limb motions could be an underlying neural mechanism of human bipedal locomotion.

Posted on Leave a comment

Effect of prolonged bed rest on bone mineral.

date: 12/19/1970
author: Donaldson CL, Hulley SB, Vogel JM, Hattner RS, Bayers JH, McMillan DE.
publication: Metabolism. 1970 Dec; 19(12): 1071-84
pubmed_ID: 4321644
Outside_URL: http://www.ncbi.nlm.nih.gov/pubmed/4321644
Bone mineral is lost during immobilization. This disuse osteopenia occurs locally in patients with fracture or hemiplegia and is generalized in quadriplegia.

Posted on Leave a comment

Alternate leg movement amplifies locomotor-like muscle activity in spinal cord injured persons.

date: 02/01/2005
author: Kawashima N, Nozaki D, Abe MO, Akai M, Nakazawa K.
publication: J Neurophysiol. 2005 Feb;93(2):777-85. Epub 2004 Sep 22.
pubmed_ID: 15385590

It is now well recognized that muscle activity can be induced even in the paralyzed lower limb muscles of persons with spinal cord injury (SCI) by imposing locomotion-like movements on both of their legs. Although the significant role of the afferent input related to hip joint movement and body load has been emphasized considerably in previous studies, the contribution of the “alternate” leg movement pattern has not been fully investigated. This study was designed to investigate to what extent the alternate leg movement influenced this “locomotor-like” muscle activity. The knee-locked leg swing movement was imposed on 10 complete SCI subjects using a gait training apparatus. The following three different experimental conditions were adopted: 1) bilateral alternate leg movement, 2) unilateral leg movement, and 3) bilateral synchronous (in-phase) leg movement. In all experimental conditions, the passive leg movement induced EMG activity in the soleus and medial head of the gastrocnemius muscles in all SCI subjects and in the biceps femoris muscle in 8 of 10 SCI subjects. On the other hand, the EMG activity was not observed in the tibialis anterior and rectus femoris muscles. The EMG level of these activated muscles, as quantified by integrating the rectified EMG activity recorded from the right leg, was significantly larger for bilateral alternate leg movement than for unilateral and bilateral synchronous movements, although the right hip and ankle joint movements were identical in all experimental conditions. In addition, the difference in the pattern of the load applied to the leg among conditions was unable to explain the enhancement of EMG activity in the bilateral alternate leg movement condition. These results suggest that the sensory information generated by alternate leg movements plays a substantial role in amplifying the induced locomotor-like muscle activity in the lower limbs.